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Abstract 

 
This study addresses an issue with the decile t-confidence interval (dt-CI), which fails to achieve the desired 

coverage probabilities for large samples or skewed distributions (Mokhtar, Yusof & Sapiri, 2024). The article 

proposes a new corrective decile t-confidence interval (cdt-CI) that resolves these issues by modifying the 

decile standard deviation. Simulations using normal, chi-squared, log-normal, and gamma distributions show 

that the cdt-CI outperforms existing methods, particularly for skewed data, in terms of coverage probability 

and robustness. The real-life data sets analyzed in this study also support the conclusions of the simulation 

study. 
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1 Introduction 
 

The confidence interval (CI) estimator for any unknown population parameter is an essential statistical tool that 

provides a safeguard against estimation uncertainty. Many classical estimation methods assume that the data 

come from a normal distribution. For instance, the z-confidence interval (z-CI) and Student’s t-confidence 

interval (t-CI) are derived under the assumption of normality. The t-CI, in particular, is applicable even when 

normality is not met, especially for large sample sizes. It is well known that the z-CI and t-CI are the most 

efficient methods when the data distribution is normal. 

 

In real-life situations, however, the assumption of normality may not be met. As such, the Student's t-CI or other 

methods that rely on normality cannot be applied. Additionally, the sample size in many practical or 

experimental studies may be small enough to invalidate the use of the Student's t-CI. The limitations of the 

Student's t technique have been noted in the existing literature (Boos & Hughes-Oliver; 2000, David, 1998; 

Desharnais et al., 2015; Wilcox, 2021). However, prior studies also suggest that the coverage probability of the 

t-CI approaches the expected nominal confidence level even when the sample size is small or the underlying 

distribution is asymmetric, while the CI length remains relatively larger compared to other CI methods (e.g., 

Boos & Hughes-Oliver, 2000; Shi & Kibria, 2007; Wang, 2001; Zhou & Dinh, 2005). 

 

Recently, Mokhtar, Yusof, and Sapiri (2024) compared the estimated coverage probabilities of the t-CI, 

percentile bootstrap CI (pb-CI), bootstrap-t CI (bt-CI), and the newly proposed decile t-CI (dt-CI) for simulated 

data from normal and skewed distributions. They suggest that the performance of these CIs varies significantly 

with respect to sample size and the type of skewness. Specifically, they note that the dt-CI fails to maintain the 

expected coverage probability for large sample sizes and skewed distributions. 

 

In this paper, a new corrective decile t confidence interval (cdt-CI) is proposed by modifying the decile standard 

deviation utilized in the construction of the previous dt-CI. The newly proposed cdt-CI is expected to improve 

coverage probability and maintain robustness across sample sizes and skewness levels. The performance of cdt-

CI has been evaluated and compared with the dt-CI and other underlying methods through real-life examples 

and simulations from normal and skewed distributions with varying degrees of skewness.  

 

The organization of the remaining paper is as follows: Section 2 provides a literature review, focusing on CI 

estimators relevant to this study. Section 3 presents a new modified CI estimator. Section 4 discusses a 

simulation study, where samples are generated from normal and skewed distributions. Section 5 examines 

several real-life data sets. Finally, Section 6 offers concluding remarks. 

 

2 Literature Review 
 

Let 𝑋 = (𝑋1𝑋2, ⋯ , 𝑋𝑛 ) be a sample from a population with an unknown population mean 𝜇  and unknown 

standard deviation 𝜎. Let �̅� be the sample mean. We wish to estimate the population mean 𝜇 via a confidence 

interval to ensure a desired level of certainty in the estimation. For the relevance of the study with the previous 

study, this section provides a brief description of the t-CI, pb-CI, bt-CI, and dt-CI methods. 
 

2.1 The t-CI of mean 𝝁 
 

In real-life situations, where the population standard deviation σ is unknown, it is estimated by the sample 

standard deviation given by  

 

𝑠 = √
∑ (𝑋𝑖−�̅�)2𝑛

𝑖=1

𝑛−1
  

 

Then, due to Student (1908), a classic 100(1−α)% t-CI for μ is given by  

 

[𝑋‾ − 𝑡𝛼/2 × 𝑠/√𝑛, 𝑋‾ + 𝑡𝛼/2 × s/√𝑛]                                                                                (1) 
 

where 𝑡𝛼/2  is the upper (𝛼/2) th of Student’s t distribution with (n-1) degrees of freedom. Because t-CI 

approach is not robust against normality (Abu-Shawiesh & Saghir, 2019; Boos & Hughes-Oliver, 2000; Shi & 
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Kibria, 2007; Bickel, 1965; Casella & Berger, 2024), it is often a common practice to employ bootstrap 

confidence interval ([Efron, 1979, 1987; Flowers-Cano et al., 2018). 

 

2.2 The pb-CI of mean 𝝁 
 

The percentile bootstrap CI (pb-CI) is the simplest choice due to the simplicity of the computational steps (Abu-

Shawiesh, Sinsomboonthong & Kibria, 2022; Pek, Wong & Wong, 2017; Islam & Shapla, 2018).  
 

Given a sample 𝑋 = (𝑋1𝑋2, ⋯ , 𝑋𝑛) of size 𝑛, the 𝑏𝑡ℎ bootstrap sample is a sample of size 𝑛, drawn from 𝑋, 

with replacement, denoted by 𝑋𝑏
∗ = (𝑋𝑏,1

∗ , 𝑋𝑏,2 
∗ , ⋯ , 𝑋𝑏,𝑛

∗ ), 𝑏 = 1,2, ⋯ , 𝐵. The mean of the 𝑏𝑡ℎ bootstrap sample 

is 𝑋‾𝑏
∗ =

∑ 𝑋𝑏,𝑗
∗𝑛

𝑗=1

𝑛
, 𝑏 = 1,2, ⋯ , 𝐵. Given 𝐵 bootstrap samples, a 100(1−α)% pb-CI for mean 𝜇 is the interval of the 

form 
 

[(𝑋‾𝑏
∗)𝛼/2, (𝑋‾𝑏

∗)1−𝛼/2]                                                                                                             (2) 
 

where (𝑋‾𝑏
∗)𝛼/2 and (𝑋‾𝑏

∗)1−𝛼/2 refer to (α/2)𝑡ℎ and (1-α/2)𝑡ℎ percentiles of B ordered bootstrap sample means 

𝑋‾𝑏
∗. One can construct a pb-CI by following the algorithm below:  

 

i. Generate 𝐵 bootstrap samples, compute and store their means, 𝑋‾𝑏
∗, 𝑏 = 1,2, ⋯ , 𝐵.  

ii. Find the (α/2)𝑡ℎ and (1-α/2)𝑡ℎ percentiles of B ordered bootstrap sample means 𝑋‾𝑏
∗. 

iii. A 100(1−α)% pb-CI for mean 𝜇 is the interval [(𝑋‾𝑏
∗)𝛼/2, (𝑋‾𝑏

∗)1−𝛼/2]. For example, if R=1000, a 95% CI 𝜇 

is the interval: [25th largest value of 𝑋‾𝑏
∗, 975th largest value of 𝑋‾𝑏

∗] 
 

The previous study suggests that pb-CI performs well in terms of estimated coverage probability and can also be 

inconsistent (Sinsomboonthong, Abu-Shawiesh & Kibria, 2020). 
 

2.3 The bt-CI of mean 𝝁 
 

An alternative to pb-CI, one may use bootstrap t confidence interval (bt-CI) of 𝜇  (Berrar, 2019; Efron & 

Tibshirani, 1994, Zhao et al., 2021), which depends on the bootstrap studentized t-score. Using the notations of 

section 2.2, the 𝑏𝑡ℎ bootstrap studentized t-score is calculated as follows. 
 

𝑇𝑏
∗ =

𝑋‾𝑏
∗−𝑋‾

𝑆𝐸(𝑋‾𝑏
∗)

                                                                                                                                              (3) 

 

where  
 

𝑇𝑏
∗ is the studentized score for 𝑏𝑡ℎ bootstrap 

 

𝑆𝐸(𝑋‾𝑏
∗) = √∑ (𝑋‾𝑏

∗−𝑋∗̅̅ ̅̅̅̅ ̅̅ )
2

𝐵
𝑏=1

𝐵−1
 is the standard error of bootstrap means 𝑋‾𝑏

∗ 

 

𝑋∗̅̅ ̅̅̅ ̅ =
∑ 𝑋‾𝑏

∗𝐵
𝑏=1

𝐵
 is the mean of 𝐵 bootstrap means 

 

Under above notations, a 100(1 − 𝛼)% bt-CI is given by 
 

[𝑋‾ − �̂�1−𝛼/2𝑆𝐸(𝑋‾𝑏
∗), 𝑋‾ − �̂�𝛼/2𝑆𝐸(𝑋‾𝑏

∗)]                                                                             (4) 
 

where �̂�1−𝛼/2 is the (1 − 𝛼/2)th percentile of 𝑇𝑏
∗ over all 𝐵 bootstrap samples. 

  
The bt-CI provides better coverage probability compared to bp-CI, and needs to be compared with cdt-CI. 
 

2.4 The dt-CI of mean 𝝁 
 

When data exhibits skewness, recent articles investigated CI of  𝜇 by implementing decile mean (DM) and 

decile standard deviation (Abu-Shawiesh, Sinsomboonthong & Kibria, 2022; Mokhtar, Yusof & Sapiri, 2024).  
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Let 𝐷𝑗 , 𝑗 = 1,2, ⋯ ,9  be 9 deciles of the sample 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 . The decile mean (DM) and decile standard 

deviation (Siraj-Ud-Doulah, 2018) are defined by 

 

𝐷𝑀 =
∑ 𝐷𝑖

9
𝑖=1

9
 and 𝑆𝐷𝐷𝑀 = √𝐷𝑀 𝑜𝑓 (𝑋𝑖 − 𝐷𝑀)2 = √

∑ 𝐷𝑗
9
𝑗=1 (𝑋−𝐷𝑀)2

9
                                  (5)  

 

where 𝐷𝑗(𝑋 − 𝐷𝑀)2, 𝑗 = 1,2, ⋯ ,9 is the jth decile of (𝑋 − 𝐷𝑀)2 given the sample 𝑋. The 100(1 − 𝛼)% decile 

t confidence interval (dt- CI) estimator of 𝜇 is defined by 

 

[𝐷𝑀 − 𝑡𝛼/2
𝑆𝐷𝐷𝑀

√𝑛
, 𝐷𝑀 + 𝑡𝛼/2

𝑆𝐷𝐷𝑀

√𝑛
]                                                                              (6) 

 

where 𝑡𝛼/2 is the upper (𝛼/2)th of Student’s t distribution with (n-1) degrees of freedom.  

 

The dt-CI fails to maintain the desired coverage probabilities of 0.95 for 95% CI and it gets worse when the 

sample size gets larger or bootstrap replication gets higher (Mokhtar, Yusof & Sapiri, 2024).  

 

The reason for its worst performance may be due to the fact that 
𝑆𝐷𝐷𝑀

√𝑛
 gets too small for large 𝑛 which results in 

a notable narrower CI to capture the unknown mean 𝜇. Indeed, the problem originates from the fact that 𝑆𝐷𝐷𝑀 is 

computed on the basis of only 9 deciles, but the standard error of DM is calculated by dividing 𝑆𝐷𝐷𝑀 by √𝑛,  

which might have caused the problem, particularly for large 𝑛. 

 

To address and resolve the noted problem of dt-CI estimator, we propose a corrective decile t confidence 

interval (cdt-CI) in section 3. 

 

3 Methodology 
 

In order to seek answer to what went wrong with the dt-CI in Mokhtar, Yusof & Sapiri (2024), we propose to 

construct a new corrective decile t confidence interval (cdt-CI) of estimator of 𝜇, which uses the corrected decile 

standard deviation (CDSD) computed by using the equation 

 

𝐶𝐷𝑆𝐷 = √
∑ (𝑋𝑖−DM)2𝑛

𝑖=1

𝑛−1
                                                                                                                           (7) 

 

Then, a 100(1 − 𝛼)% corrective decile t-confidence interval (cdt-CI) of 𝜇 is constructed using equation 

 

[𝑋‾ − 𝑡𝛼/2 × 𝐶𝐷𝑆𝐷/√𝑛, 𝑋‾ + 𝑡𝛼/2 × 𝐶𝐷𝑆𝐷/√𝑛]                                                                                     (8)   

 

Compared to the dt-CI constructed in Section 2.4, the cdt-CI uses the correct form of the decile standard 

deviation, which aligns with the definition of sample standard deviation given by 𝑠 = √
∑ (𝑋𝑖−�̅�)2𝑛

𝑖=1

𝑛−1
 and the 

corresponding standard error calculated as 𝑠/√𝑛.  

 

In contrast, the dt-CI uses equation (5) where the denominator in the standard deviation computation is 9 

(instead of 9-1 or 𝑛-1 for a sample of size 𝑛). While for large 𝑛, the effect of 𝑛 and 𝑛-1 is negligible, the 

difference between 9 and 𝑛-1 remains significant for large 𝑛, especially for skewed distributions. Because of the 

specified difference in the standard deviation formula, the difference in the performance of the dt-CI and cdt-CI 

is expected to be significant in terms of the estimated coverage probability. We hypothesize that cdt-CI will 

provide better coverage probability compared to dt-CI, which requires a simulation study or real-life examples 

to justify. 

 

4 Simulation Study  
 

When evaluation of various alternative methods is impossible or challenging theoretically, it is customary to use 

simulation to justify the usefulness of a given method compared to other alternative methods. As such, many 
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researchers opt for simulation study to assess CIs (Abu-Shawiesh, Sinsomboonthong & Kibria, 2022; Mokhtar, 

Yusof & Sapiri, 2024, Islam & Shapla, 2018; Shi & Kibria, 2007).  

 

In this simulation study, we generate data from four different models as defined below: 

 

(M1) Generate samples from a positively skewed gamma distribution 𝐺(𝜃1, 𝜃2) with density function specified 

by  

 

𝑓(𝑥) =
𝑥𝜃1−1exp (−

𝑥

𝜃2
 )

𝜃2
𝜃1Γ(θ1)

; 𝑥 > 0, 𝜃1, 𝜃2 > 0                                                                                                      (9) 

 

where 𝜃1 is a shape parameter, 𝜃2 is a scale parameter and the skewness is equal to 2 √𝜃1⁄ .  Since the mean of 

this distribution is 𝜇 = 𝜃1𝜃2, by choosing 𝜃2 =
1

𝜃1
 and 𝜃1 values at 16, 4, 1, 1/4, we get mean fixed at 𝜇 = 1 and 

skewness values at 0.5, 1, 2, 4, respectively. Our objective is to evaluate sensitivity of various CI methods with 

respect to varying skewness chosen arbitrarily to make the comparison notable. 

 

(M2) Generate samples from a normal distribution with the density function  

 

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒−

1

2
(

𝑥−𝜇

𝜎
)

2

, −∞ < 𝑥 < ∞, −∞ < 𝜇 < ∞, 𝜎 > 0      (10) 

 

This distribution is symmetric (i.e., skewness=0) with location parameter 𝜇 and scale parameter 𝜎. For this 

simulation, we consider 𝜇 = 0 and 𝜎 = 1, arbitrarily without the loss of generality. 

 

(M3) A skewed Chi-squared distribution with degrees of freedom 𝑑𝑓 = 𝑘 so as to have the mean 𝜇 = 𝑘 and 

skewness equal to √8/𝑘 with the density function given by 

 

𝑓(𝑥, 𝑘) =
𝑥𝑘/2−1𝑒−𝑥/2

𝛤(𝑘/2)2𝑘−1 , 𝑥 > 0         (11) 

 

By choosing 𝑘=128, 32, 8 and 2, we allow skewness to be 0.25, 0.5, 1 and 2, while mean remains the same as 

the value of 𝑘. 

 

(M4) Lognormal distribution with the density function given by 

 

𝑓(𝑥) =
1

𝑥𝜎√2𝜋
𝑒

−(
𝑙𝑜𝑔𝑥−𝜇

2𝜎2 )
, 𝑥 > 0, 𝜎 > 0, −∞ < 𝜇 < ∞       (12) 

 

where 𝜇 and 𝜎 are log-location and log-scale parameters with 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = 𝑒𝜎2+2√𝑒𝜎2−1 and 𝑚𝑒𝑎𝑛 = 𝑒𝜇+
𝜎2

2 . 

 

By choosing 𝜇 = 1 and 𝜎2 =
1

10
,

1

4
,

1

2
 and 1, we allow skewness values to be 1, 1.75, 2.94 and 6.18, mean to be 

2.86, 3.08, 3.49 and 4.48. 

 

In all simulations, the Monte Carlo size is chosen to be 5,000, and bootstrap replication B is chosen to be 1000, 

following the standard practice (Efron, 1979, 1987; Efron & Tibshirani,1994). Following (Mokhtar, Yusof & 

Sapiri, 2024) the bootstrap replications of B=250 and 500 were used in simulation, where no significant 

difference in results were noted. Therefore, the results of bootstrap replication of 𝐵 = 250 or 𝐵 = 500 have not 

been reported to avoid redundancy in reported results.  

 

The results of simulation have been reported in Tables 2-5 for sample size varying between 10 and 400, at 10, 

15, 20, 25, 30, 50, 100, 200 and 400 following the standard practice (Abu-Shawiesh, Sinsomboonthong & 

Kibria, 2022; Mokhtar, Yusof & Sapiri, 2024, Islam & Shapla, 2018; Shi & Kibria, 2007). 

 

For simplicity of presentation, the skewness coefficients of four models of population distributions considered in 

the simulation study are made available in Table 1. 
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Table 1. The parameters of normal and chi-square distribution 

 

Models Parameters Skewness 

M1: 𝑁(𝜇, 𝜎2) 𝜇 = 1, 𝜎2 = 1  0 

M2: 𝜒𝑘
2 k=128, 32, 8, 2 0.25, 0.5, 1, 2 

M3:LN(1,𝜎2) 𝜎2 =
1

10
,

1

4
,

1

2
, 1  1,1.75, 2.94, 6.18 

M4: Gamm(𝜃1, 𝜃2) 𝜃1 = 16, 4, 1, 1/4, 𝜃2 =
1

𝜃1
 0.5, 1, 2, 4 

 

5 Evaluation Criteria of Simulations 
 

The evaluation criteria for the goodness of any underlying confidence interval method are the estimated 

coverage probability and the average length of the corresponding confidence interval estimator (Abu-Shawiesh, 

Sinsomboonthong & Kibria, 2022; Mokhtar, Yusof & Sapiri, 2024, Moslim, Zubairi & Hassan, 2019; Islam & 

Shapla, 2018; Shi & Kibria, 2007; Waguespack, Krishnamoorthy & Lee, 2020).  

 

Given that this study considers the Monte Carlo size of M=5000, the estimated coverage probability (cp) and the 

average length of any specified CI are estimated using 5000 samples as follows: 

 

Est. coverage probability of any CI method =
# of CIs capturing 𝜇

5000
  

 

Est. average length of any CI method =
∑ (𝑈𝐶𝐿𝑖 − 𝐿𝐶𝐿𝑖)5000

𝑖=1

5000
 

 

In other words, the estimated coverage probability is the proportion of 5000 CIs capturing the mean 𝜇 by any 

underlying CI estimator. The average length is the average of lengths of all 5000 CIs, where length of an 

underlying CI method is the difference of lower confidence limit (LCL) from the upper confidence limit (UCL).  

 

To estimate the coverage probability and the estimated CI length while doing the simulation, fix sample size and 

skewness value by selecting appropriate model parameters specified in Table 1 and then follow the steps below: 

 

(1a) Take M=5000 samples from the desired model (e.g., any of models M1–M4), each of size 𝑛. For each of 

these samples, compute t-CI, dt-CI, and cdt-CI, and store them. 

 

(1b) For bootstrap CIs (pb-CI or bt-CI), for each sample in (1a), generate 𝐵=1000 bootstrap samples and 

compute the pb-CI and bt-CI. This results in 5000 pb-CIs and bt-CIs, which are then stored. 
 

(2a) The proportions of 5000 t-CIs, dt-CIs, and cdt-CIs in (1a) capturing 𝜇  are the estimated coverage 

probabilities for the corresponding CIs. 
 

(2b) The proportions of 5000 pb-CIs and bt-CIs in (1b) capturing 𝜇 are the estimated coverage probabilities for 

the corresponding bootstrap CIs. 

 

(3) For each of the t-CIs, dt-CIs, and cdt-CIs in (1a) or pb-CIs and bt-CIs in (1b), compute the CI length. The 

average of 5000 CI lengths is the estimated average CI length of the corresponding CI. 
 

The estimated coverage probability of a 95% CI is expected to be close to 0.95. Therefore, the performance of 

an underlying CI is satisfactory if its coverage probability is close to 0.95 or near (1−α) over all M Monte Carlo 

samples.  
 

As a computational tool, in all computation and simulation, the statistical software R (R Core Team, 2024) has 

been utilized in this article. 
 

6 Simulation Results     
 

The results of all simulations for varying sample sizes and skewness values are reported in Tables 2-5.  
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Let us first examine the results of simulations from skewed distributions, as reported in Tables 2-4. The results 

from two columns, labeled "dt-CI" and "cdt-CI," are presented in bold. When comparing the results from these 

two columns, it is clearly evident that the cdt-CI estimator outperforms the dt-CI estimator in terms of estimated 

coverage probability. For example, for the gamma distribution with skewness = 0.5, when the sample size 𝑛 

increases from 10 to 400, the estimated coverage probability increases from 0.83 to 0.95 for cdt-CI, while it 

decreases from 0.90 to 0.83 for dt-CI. When skewness = 4, and 𝑛 increases from 10 to 400, the estimated 

coverage probability increases from 0.81 to 0.94 for cdt-CI, while it decreases from 0.59 to 0.00 for dt-CI. The 

performance trends for the cdt-CI and dt-CI estimators in the log-normal (Table 3) and chi-squared distributions 

(Table 4) are similar to the trend observed for the gamma distribution. The coverage performance of other CI 

estimators improves as the sample size increases.  

 

The bt-CI estimator retains robustness against increasing skewness, as does the cdt-CI estimator. However, bt-

CI maintains higher coverage compared to cdt-CI, while cdt-CI has a smaller width compared to bt-CI. For 

example, for the log-normal distribution with skewness = 6.18 and 𝑛 increases from 10 to 400 (Table 3), the 

estimated coverage probability increases from 0.91 to 0.95 for bt-CI, while it increases from 0.84 to 0.94 for cdt-

CI. Conversely, for the same simulation conditions, the estimated width decreases from 13.37 to 1.2 for bt-CI, 

while it decreases from 6.78 to 1.15 for cdt-CI. Therefore, length-wise, cdt-CI outperforms bt-CI, and dt-CI 

performs best with the lowest width, in all simulation cases. In performance, bt-CI and cdt-CI are followed by 

the t-CI or pb-CI in terms of coverage probability. The dt-CI performs poorly compared to all the other methods. 

 

For simulation from symmetric normal distribution reported in Table 5, the bt-CI remains to be the best 

performer, or at least as good as the t-CI, followed by the dt-CI (particularly for small samples), pb-CI (which 

performs better for large samples), and cdt-CI. For example, for increasing n from 10 to 400, the coverage 

probability ranges from 0.95 to 0.96 for bt-CI mostly with the desired expectation of 0.95, from 0.94 to 0.96 for 

t-CI with no definite trend, from 0.91 to 0.96 mostly decreasingly for dt-CI, from 0.89 to 0.95 increasingly for 

pb-CI, and from 0.89 to 0.95 increasingly for cdt-CI. However, as compared all methods using the width of CI 

estimators, cdt-CI appears to the best with width ranging in the interval (0.20, 1.15) decreasingly with the 

increase of n, followed by pb-CI in (0.20, 1.15), dt-CI in (0.20,1.40), t-CI in (0.20, 1.40), and bt-CI in (0.20, 

1.51). Overall, for normal distribution, the dt-CI performs reasonably well, better than the cdt-CI, in terms of 

coverage probability, but in terms of width cdt-CI is better performer than dt-CI. This simulation is in 

contradiction with Table 2, column 6, of Mokhtar, Yusof & Sapiri, (2024) where dt-CI appears to be very 

inconsistent and unexpectable even for normal distribution.  

 

Table 2. Simulated coverage probability and length of CI for gamma distribution varying sample size and 

skewness 

 

Skewness  Est. coverage probability of CI methods Est. average length of CI methods 

 n t-CI pb-CI bt-CI dt-CI cdt-CI t-CI pb-CI bt-CI dt-CI cdt-CI 

 

 

 

 

0.5 

10 0.95 0.91 0.95 0.90 0.95 0.35 0.28 0.38 0.29 0.35 

15 0.95 0.92 0.95 0.89 0.95 0.27 0.24 0.28 0.23 0.27 

20 0.95 0.93 0.95 0.89 0.95 0.23 0.21 0.24 0.19 0.23 

25 0.94 0.93 0.94 0.88 0.94 0.20 0.19 0.21 0.17 0.20 

30 0.94 0.93 0.94 0.89 0.95 0.18 0.17 0.19 0.16 0.18 

50 0.95 0.94 0.95 0.89 0.95 0.14 0.14 0.14 0.12 0.14 

100 0.95 0.95 0.95 0.88 0.95 0.10 0.10 0.10 0.09 0.10 

200 0.95 0.95 0.95 0.86 0.95 0.07 0.07 0.07 0.06 0.07 

400 0.94 0.94 0.94 0.83 0.95 0.05 0.05 0.05 0.05 0.05 

 

 

 

 

1 

10 0.94 0.90 0.96 0.87 0.94 0.69 0.57 0.79 0.56 0.69 

15 0.93 0.90 0.95 0.86 0.93 0.54 0.48 0.58 0.44 0.54 

20 0.94 0.92 0.95 0.86 0.94 0.46 0.42 0.48 0.37 0.46 

25 0.95 0.93 0.95 0.85 0.95 0.41 0.38 0.42 0.33 0.41 

30 0.94 0.93 0.95 0.86 0.95 0.37 0.35 0.38 0.30 0.37 

50 0.95 0.94 0.95 0.84 0.95 0.28 0.27 0.29 0.23 0.28 

100 0.94 0.94 0.94 0.80 0.94 0.20 0.19 0.20 0.16 0.20 

200 0.95 0.95 0.96 0.73 0.95 0.14 0.14 0.14 0.11 0.14 

400 0.95 0.94 0.95 0.63 0.95 0.10 0.10 0.10 0.10 0.08 

 10 0.89 0.85 0.93 0.77 0.89 1.32 1.07 1.91 0.96 1.34 
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Skewness  Est. coverage probability of CI methods Est. average length of CI methods 

 n t-CI pb-CI bt-CI dt-CI cdt-CI t-CI pb-CI bt-CI dt-CI cdt-CI 

 

 

 

 

2 

15 0.92 0.89 0.95 0.76 0.92 1.05 0.93 1.33 0.76 1.06 

20 0.93 0.92 0.95 0.75 0.93 0.90 0.82 1.07 0.65 0.91 

25 0.92 0.91 0.95 0.72 0.92 0.80 0.74 0.91 0.57 0.80 

30 0.93 0.92 0.95 0.73 0.93 0.73 0.69 0.82 0.52 0.74 

50 0.94 0.93 0.95 0.68 0.94 0.56 0.54 0.60 0.40 0.57 

100 0.94 0.94 0.95 0.56 0.95 0.39 0.39 0.41 0.28 0.40 

200 0.96 0.95 0.96 0.37 0.96 0.28 0.28 0.28 0.20 0.28 

400 0.95 0.95 0.95 0.17 0.95 0.20 0.20 0.20 0.20 0.14 

 

 

 

 

4 

10 0.80 0.78 0.93 0.59 0.81 2.33 1.83 12.00 1.38 2.38 

15 0.83 0.82 0.94 0.54 0.84 1.94 1.66 5.08 1.06 1.98 

20 0.86 0.85 0.95 0.49 0.86 1.68 1.50 3.14 0.88 1.71 

25 0.87 0.87 0.95 0.48 0.88 1.51 1.38 2.54 0.78 1.53 

30 0.87 0.87 0.94 0.45 0.88 1.39 1.30 2.12 0.71 1.42 

50 0.90 0.91 0.95 0.35 0.91 1.07 1.03 1.39 0.53 1.09 

100 0.92 0.92 0.94 0.19 0.92 0.77 0.76 0.88 0.37 0.79 

200 0.93 0.94 0.95 0.05 0.94 0.55 0.55 0.59 0.27 0.56 

400 0.94 0.94 0.95 0.00 0.94 0.39 0.39 0.40 0.40 0.19 

 

Table 3. Simulated coverage probability and length of CI for log-normal distribution with varying sample 

size and skewness 

 

Skewness  Est. coverage probability of CI methods Est. average length of CI methods 

 n t-CI pb-CI bt-CI dt-CI cdt-CI t-CI pb-CI bt-CI dt-CI cdt-CI 

 

 

 

 

1 

10 0.93 0.89 0.94 0.87 0.93 1.27 1.04 1.46 1.01 1.28 

15 0.95 0.92 0.95 0.87 0.95 0.99 0.88 1.07 0.80 1.00 

20 0.94 0.92 0.94 0.86 0.94 0.85 0.78 0.90 0.69 0.85 

25 0.94 0.92 0.95 0.86 0.94 0.75 0.70 0.79 0.61 0.76 

30 0.94 0.92 0.95 0.86 0.94 0.68 0.64 0.70 0.55 0.68 

50 0.95 0.94 0.95 0.85 0.95 0.52 0.50 0.53 0.43 0.52 

100 0.95 0.94 0.95 0.81 0.95 0.37 0.36 0.37 0.30 0.37 

200 0.95 0.95 0.95 0.76 0.95 0.26 0.26 0.26 0.21 0.26 

400 0.96 0.96 0.96 0.64 0.96 0.18 0.18 0.18 0.15 0.18 

 

 

 

 

1.75 

10 0.93 0.88 0.95 0.84 0.93 2.20 1.80 2.78 1.67 2.22 

15 0.92 0.89 0.94 0.82 0.92 1.71 1.51 1.98 1.30 1.73 

20 0.93 0.92 0.95 0.81 0.94 1.48 1.35 1.66 1.11 1.49 

25 0.93 0.92 0.94 0.80 0.93 1.32 1.23 1.45 0.99 1.32 

30 0.93 0.92 0.95 0.79 0.93 1.18 1.12 1.28 0.89 1.19 

50 0.94 0.93 0.94 0.75 0.94 0.92 0.88 0.96 0.68 0.92 

100 0.94 0.94 0.95 0.68 0.94 0.64 0.64 0.66 0.48 0.65 

200 0.95 0.95 0.95 0.54 0.95 0.45 0.45 0.46 0.34 0.46 

400 0.94 0.94 0.95 0.34 0.95 0.32 0.32 0.32 0.24 0.32 

 

 

 

 

 

2.94 

10 0.89 0.86 0.93 0.79 0.90 3.60 2.91 5.30 2.53 3.64 

15 0.90 0.88 0.93 0.75 0.90 2.85 2.49 3.76 1.95 2.88 

20 0.90 0.89 0.93 0.72 0.90 2.45 2.22 3.03 1.64 2.47 

25 0.91 0.90 0.93 0.73 0.91 2.19 2.03 2.61 1.47 2.21 

30 0.92 0.91 0.94 0.70 0.92 1.99 1.87 2.32 1.32 2.01 

50 0.93 0.92 0.95 0.62 0.93 1.54 1.49 1.71 1.01 1.56 

100 0.94 0.94 0.95 0.49 0.94 1.09 1.08 1.16 0.71 1.10 

200 0.95 0.95 0.95 0.29 0.95 0.77 0.77 0.80 0.50 0.78 

400 0.95 0.96 0.96 0.09 0.95 0.55 0.55 0.56 0.35 0.55 

 

 

 

 

10 0.84 0.80 0.91 0.68 0.84 6.66 5.31 13.37 4.25 6.78 

15 0.86 0.84 0.92 0.64 0.86 5.42 4.68 9.23 3.20 5.50 

20 0.87 0.86 0.92 0.58 0.87 4.71 4.22 7.44 2.64 4.78 

25 0.88 0.87 0.93 0.56 0.88 4.30 3.94 6.47 2.34 4.37 
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Skewness  Est. coverage probability of CI methods Est. average length of CI methods 

 n t-CI pb-CI bt-CI dt-CI cdt-CI t-CI pb-CI bt-CI dt-CI cdt-CI 

6.18 30 0.89 0.88 0.93 0.54 0.89 3.86 3.60 5.40 2.11 3.92 

50 0.89 0.89 0.93 0.44 0.90 3.04 2.91 3.85 1.61 3.08 

100 0.92 0.93 0.95 0.26 0.93 2.21 2.17 2.58 1.12 2.24 

200 0.93 0.93 0.94 0.09 0.93 1.59 1.57 1.74 0.79 1.60 

400 0.94 0.94 0.94 0.01 0.94 1.13 1.13 1.2 0.56 1.15 

 

Table 4. Simulated coverage probability and length of CI for chi-squared distribution with varying 

sample size and skewness 

 

Skewness  Est. coverage probability of CI methods Est. average length of CI methods 

 n t-CI pb-CI bt-CI dt-CI cdt-CI t-CI pb-CI bt-CI dt-CI cdt-CI 

 

 

 

 

0.25 

10 0.95 0.90 0.96 0.90 0.95 22.33 18.30 24.20 18.63 22.38 

15 0.95 0.93 0.96 0.91 0.95 17.42 15.39 18.01 14.78 17.45 

20 0.96 0.93 0.95 0.90 0.96 14.76 13.48 15.08 12.59 14.77 

25 0.95 0.93 0.95 0.90 0.95 13.07 12.19 13.28 11.25 13.08 

30 0.95 0.93 0.95 0.90 0.95 11.85 11.20 12.01 10.24 11.87 

50 0.94 0.94 0.94 0.89 0.94 9.05 8.77 9.11 7.89 9.05 

100 0.94 0.94 0.95 0.89 0.94 6.32 6.24 6.36 5.55 6.33 

200 0.94 0.94 0.94 0.90 0.94 4.46 4.44 4.48 3.93 4.46 

400 0.95 0.95 0.95 0.89 0.95 3.14 3.14 3.16 2.77 3.15 

 

 

 

 

0.50 

10 0.94 0.90 0.95 0.89 0.94 11.07 9.08 12.17 9.15 11.11 

15 0.94 0.92 0.94 0.89 0.94 8.73 7.70 9.13 7.32 8.75 

20 0.95 0.92 0.95 0.89 0.95 7.39 6.76 7.61 6.24 7.40 

25 0.94 0.92 0.94 0.88 0.94 6.53 6.09 6.68 5.55 6.54 

30 0.96 0.94 0.96 0.90 0.96 5.92 5.59 6.03 5.07 5.93 

50 0.95 0.95 0.96 0.90 0.95 4.53 4.39 4.58 3.89 4.53 

100 0.94 0.94 0.94 0.88 0.94 3.16 3.12 3.18 2.73 3.16 

200 0.95 0.95 0.95 0.87 0.95 2.23 2.22 2.24 1.94 2.23 

400 0.95 0.95 0.95 0.84 0.95 1.57 1.57 1.58 1.57 1.37 

 

 

 

 

 

1 

10 0.93 0.89 0.94 0.86 0.93 5.52 4.52 6.44 4.41 5.55 

15 0.94 0.92 0.95 0.86 0.95 4.31 3.80 4.66 3.49 4.32 

20 0.94 0.92 0.94 0.85 0.94 3.66 3.35 3.88 2.97 3.68 

25 0.94 0.92 0.94 0.85 0.94 3.23 3.01 3.37 2.63 3.24 

30 0.94 0.93 0.95 0.85 0.94 2.94 2.78 3.05 2.40 2.95 

50 0.94 0.94 0.95 0.84 0.94 2.26 2.18 2.31 1.85 2.26 

100 0.96 0.95 0.95 0.80 0.96 1.58 1.56 1.60 1.30 1.58 

200 0.95 0.95 0.95 0.74 0.95 1.11 1.11 1.12 0.92 1.12 

400 0.94 0.94 0.94 0.61 0.94 0.79 0.79 0.79 0.79 0.65 

 

 

 

 

2 

10 0.91 0.88 0.95 0.79 0.92 2.66 2.16 3.85 1.93 2.69 

15 0.92 0.90 0.95 0.75 0.92 2.10 1.84 2.64 1.51 2.12 

20 0.93 0.91 0.95 0.76 0.93 1.79 1.63 2.11 1.29 1.81 

25 0.93 0.92 0.95 0.73 0.93 1.60 1.49 1.84 1.14 1.61 

30 0.93 0.92 0.95 0.70 0.93 1.45 1.36 1.63 1.02 1.46 

50 0.94 0.94 0.95 0.67 0.94 1.12 1.08 1.20 0.79 1.13 

100 0.94 0.94 0.95 0.54 0.94 0.79 0.77 0.82 0.56 0.79 

200 0.95 0.94 0.95 0.39 0.95 0.56 0.55 0.57 0.39 0.56 

400 0.94 0.94 0.94 0.16 0.94 0.39 0.39 0.40 0.40 0.28 

 

7 Examples and Applications with Real-Life Data  
 

In this section, we construct a 95% CI for the mean μ using data from real-life situations, with one dataset 

following a normal distribution and others exhibiting either positive or negative skewed distributions. Since we 

cannot observe the coverage probability for real-life data, we report the CI and the length of the corresponding 

CI estimators instead. 
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Example 1   

 

In this example, we utilize relative poverty (%) in Malaysia for selected years from 1970 to 2022 as has been 

reported in data.gov.my (2024a).  

 

19.5, 19.7, 19.0, 20.0, 19.9, 17.4, 19.3, 19.2, 15.6, 15.9, 16.9, 16.2, 16.6 

 

The data skewness value of -0.27, mean 18.1 and median 19.0 (mean<median) along with the histogram and 

boxplot in Fig. 1, all suggest that the distribution of relative poverty is negatively skewed. The Shapiro-Wilk test 

of normality (W= 0.86128, p-value = 0.04005) suggests that at significance level α = 5%, the relative poverty 

population distribution fails to be normally distributed.  Now, let us have a look at 95% CIs for various 

underlying methods reported in Table 6. 

 

Table 5. Simulated coverage probability and length of CI for normal distribution with varying sample 

size 

 

 Est. coverage probability of CI methods Est. average length of CI methods 

n t-CI pb-CI bt-CI dt-CI cdt-CI t-CI pb-CI bt-CI dt-CI cdt-CI 

10 0.94 0.89 0.95 0.94 0.89 1.40 1.15 1.51 1.40 1.15 

15 0.94 0.92 0.95 0.94 0.89 1.09 0.96 1.12 1.09 0.93 

20 0.96 0.94 0.95 0.96 0.91 0.92 0.84 0.94 0.92 0.79 

25 0.95 0.93 0.95 0.95 0.91 0.82 0.76 0.83 0.82 0.71 

30 0.95 0.94 0.95 0.95 0.91 0.74 0.70 0.75 0.74 0.64 

50 0.96 0.95 0.96 0.96 0.92 0.57 0.55 0.57 0.57 0.50 

100 0.95 0.95 0.95 0.95 0.92 0.40 0.39 0.40 0.40 0.35 

200 0.95 0.94 0.95 0.94 0.91 0.28 0.28 0.28 0.28 0.25 

400 0.95 0.95 0.95 0.91 0.95 0.20 0.20 0.20 0.20 0.20 

 

 
 

Fig. 1. Histogram and boxplot of relative poverty in Malaysia 

 

Table 6. 95% CIs and corresponding length for relative poverty data in Example 1 

 

Methods CI estimate Length 

t-CI [17.08, 19.11] 2.03 

pb-CI [17.26, 18.88] 1.62 

bt-CI [17.08, 18.98] 1.90 

dt-CI [17.22, 19.10] 1.88 

cdt-CI [17.08, 19.11] 2.03 

 

The results of Table 6 reveal that the pb-CI has the smallest length (length of 1.62), followed by dt-CI (length of 

1.88), bt-CI (length of 1.90) and jointly t-CI and cdt-CI (both having length 2.03). Therefore, with length 
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consideration, pb-CI or dt-CI are preferable to others. However, it may not be safe to make such conclusion on 

the basis of single sample given the noted performance of pb-CI or dt-CI through the simulations.  

 

Example 2   

 

In this example, we consider quarterly unemployment rate in Kedah state of Malaysia between 2017 and 2Q 

2024 reported in data.gov.my (2024b):  

 

2.5 3.1 3.1 2.8 3.7 4.0 3.8 3.3 2.8 2.1 

3.0 3.0 3.0 3.2 4.1 3.6 3.8 3.0 2.6 1.9 

2.7 2.5 3.0 3.1 4.4 3.9 3.4 3.3 2.3 1.7 

 

The data skewness value of -0.0997, mean 3.09 and median 3.05 (mean appears to be close to the median) along 

with the histogram and boxplot in Fig. 2, might suggest the population to be less skewed. The Shapiro-Wilk test 

of normality (W= 0.98394, p-value = 0.9178) suggests that at significance level α = 5%, the quarterly 

unemployment rate in Kedah state might have been normally distributed.  As such, let focus our attention to 

95% CIs for various underlying methods reported in Table 7. 

 

   
 

Fig. 2. Histogram and boxplot of unemployment rate in Kedah state of Malaysia 

 

Table 7. 95% CIs and length for various CIs for Kedah state unemployment rate data of Example 2 

 

Methods CI estimate Length 

t-CI [2.85, 3.33] 0.48 

pb-CI [2.88, 3.33] 0.45 

bt-CI [2.84, 3.33] 0.49 

dt-CI [2.88, 3.30] 0.42 

cdt-CI [2.85, 3.33] 0.48 
 

The results in Table 7 reveal that the dt-CI has the smallest length (0.42), followed by the pb-CI (0.45), with the 

t-CI and cdt-CI both having a length of 0.48, and the bt-CI having the largest length. Unlike Example 1, where 

the sample size is small, Example 2 uses a larger sample size (n=30), which leads to a switch in the performance 

of dt-CI and pb-CI.  
  
Example 3   
 

In this example, we consider the quarterly unemployment rates for all 16 states of Malaysia between 2017 and 

Q2 2024, with each state having 30 observations, resulting in a total sample size of 𝑛=16×30=480, as reported in 

data.gov.my (2024b). 
 

The data has a skewness of 1.23, with the mean (3.6) being greater than the median (3.3). The histogram and 

boxplot in Fig. 3 clearly suggest that the data distribution is positively skewed, with the boxplot indicating 
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possible outliers on the right tail. The Shapiro-Wilk test of normality (W = 0.90738, p-value < 0.00001) 

provides strong evidence that the distribution of the quarterly unemployment rate is not normally distributed. 

 

Given the large sample size (n=480), a t-test can be used to assess whether the population mean is indeed 3.6. 

The results of the t-test strongly suggest that the population distribution of unemployment could have a mean of 

3.6, with a p-value of 0.9783. Estimates of the 95% confidence intervals for various methods are reported in 

Table 8. 

 

   
 

Fig. 3. Histogram and boxplot of quarterly unemployment in Malaysia 

 

Table 8. 95% CIs and length for quarterly unemployment rates in Malaysia for Example 3 

 

Methods CI estimate Length 

t-CI [3.45, 3.75] 0.30 

pb-CI [3.46, 3.73] 0.27 

bt-CI [3.47, 3.74] 0.27 

dt-CI [3.31, 3.54] 0.23 

cdt-CI [3.45, 3.75] 0.30 

 

As seen in other examples, the dt-CI has the smallest length (0.23), followed by the pb-CI and bt-CI, both with a 

length of 0.27. However, it is important to note that the dt-CI, [3.31,3.54], does not capture the hypothetical 

mean of 3.6, which aligns with the simulation results showing the poor performance of the dt-CI under 

conditions of large sample size and higher skewness. In contrast, the t-CI and the proposed cdt-CI both capture 

the hypothetical mean of 3.6, as do the other CI methods, except for the dt-CI. The consistent performance of 

the cdt-CI in terms of coverage probability is well supported, even though it comes at the cost of a relatively 

larger length.  

 

Example 4   

 

This example has been revisited from Example 2 (Mokhtar, Yusof & Sapiri, 2024), to reinvestigate why pb-CI 

reported in Table 8 differs to a greater extent form other underlying CI.  

 

43.4, 24, 1.8, 0, 0.1, 170.1, 0.4, 150, 31.5, 5.2, 35.7, 27.3, 5, 64.3, 70, 94, 61.9, 9.1, 38.8 and 14.8.  

 

The data has a skewness of 1.45, and the fact that the mean (42.4) is greater than the median (29.4), along with 

the histogram and boxplot in Fig. 2, all suggest that the data is positively skewed. Upon revisiting this data, the 

95% CIs for the various methods are presented in Table 9. 

 

From the results reported in Table 9, it is noted that the length of the dt-CI is the smallest (30.94), followed by 

the pb-CI (41.29), t-CI (45.34), cdt-CI (45.92), and bt-CI (56.78). These results are generally consistent with 

those in Table 8 (Mokhtar, Yusof & Sapiri, 2024), except for the pb-CI. In prior paper, the pb-CI was reported 

to be [0.05, 160.55], with a length of 160.5, which differed substantially from the other CIs reported in Table 8, 

possibly indicating an error. 



 
 

 

 
Islam and Shapla; Asian J. Prob. Stat., vol. 26, no. 12, pp. 69-83, 2024; Article no.AJPAS.127301 

 

 

 
81 

 

   
 

Fig. 4. Boxplot and histogram of psychotropic drug user’s data of Example 4 
 

Table 9. 95% CIs and corresponding length for data in Example 4 
 

Methods CI estimate Length 

t-CI [19.70, 65.04] 45.34 

pb-CI [22.59, 63.88] 41.29 

bt-CI [24.31, 81.09] 56.78 

dt-CI [19.34, 50.28] 30.94 

cdt-CI [19.41, 65.33] 45.92 
 

8 Conclusions  
 

This study proposes a new corrective decile-based confidence interval (CI) for the mean 𝜇, by modifying the 

decile standard deviation formula previously proposed and studied by Mokhtar, Yusof, and Sapiri (2024). The 

newly proposed corrective decile t-CI (cdt-CI) outperforms the prior decile t-CI (dt-CI) in terms of estimated 

coverage probability, particularly for data with higher skewness. Through simulations with normal and skewed 

distributions, varying sample sizes, and different skewness levels, the study concludes that the dt-CI fails to 

achieve the expected coverage probability of 0.95 for a 95% CI as the sample size increases and skewness levels 

rise, especially for skewed distributions. The notable difference in performance is likely due to the fact that the 

cdt-CI uses a corrective decile standard deviation formula, which aligns with the classical sample standard 

deviation definition presented in Section 3. Overall, as noted in this study, for skewed distributions (e.g., the 

results for gamma, log-normal, and chi-squared distributions reported in Tables 2-4), the coverage probability of 

all CI estimators improves as the sample size increases, except for dt-CI, which struggles significantly to 

maintain the coverage probability. For higher skewness values, the bt-CI consistently performs the best, 

followed by the cdt-CI and t-CI, with dt-CI performing the worst. While dt-CI fails in terms of coverage 

probability, it performs best in terms of estimated length. For normal distribution (e.g., Table 5), bt-CI remains 

the best, or as good as the t-CI, followed by dt-CI, pb-CI, and cdt-CI. Interestingly, while dt-CI performs better 

than cdt-CI in terms of coverage probability for normal distributions, the length of the cdt-CI is narrower than 

that of the dt-CI across all sample sizes, making the cdt-CI more robust than the dt-CI (Table 5). While for 

normal data, choosing between t-CI, bt-CI, and dt-CI does not make a significant difference for small samples, 

for skewed distributions, the choice must be made between bt-CI and cdt-CI. Being a non-bootstrap sample, 

however, cdt-CI should be preferred in practice due to its simplicity. This study, therefore, recommends using 

the cdt-CI estimator when dealing with data exhibiting skewness. 
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