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ABSTRACT 
 

In light of groundwater's fundamental role in providing drinking water to populations in the Sahel, its 
management and monitoring are vital for predicting and mitigating future crises. The goal of this 
study is to assess the groundwater quality in Bam province using the Water Quality Index (WQI), 
and to predict these indices through the application of Artificial Neural Networks (ANN) and 
traditional Multiple Linear Regression (MLR) techniques. In this context, a variety of 
physicochemical parameters such as Total Hardness (TH), pH, Electrical Conductivity (EC), 
calcium, magnesium, sodium, potassium, ammonium, bicarbonate, chloride, sulphate, nitrite, 
nitrate, phosphorus, and fluoride were collected from 154 boreholes, analysed, and used to 
calculate the WQIs. These parameters were employed as inputs, while the WQIs served as the 
output target for the models. The data were arranged in ascending order based on the indices, with 
70% of the data reserved for training the models and 30% for testing. 
The groundwater quality in the study area, characterized by its geological heterogeneity and 
discontinuous fractures affecting groundwater flow, is predominantly excellent, with 95.45% of the 
samples having WQIs below 50. The remaining 4.55% is split between good (3.90%) and poor 
(0.65%) quality, with WQIs ranging from 50–100 and 100–200, respectively. In terms of predictive 
modeling, the ANN method provided the most accurate results, with R² (coefficient of correlation) = 
0.99, RMSE (Root Mean Scare Error) = 0.0037, and MAE (Mean Absolute Error) = 0.0032 for the 
training set, and R² = 0.96, RMSE = 4.46, and MAE = 3.27 for the testing set. By comparison, the 
traditional method showed lower accuracy with R² = 0.61, RMSE = 2.71, MAE = 2.02 for the training 
set, and R² = 0.93, RMSE = 7.97, MAE = 6.32 for the testing set. The slight decrease in model 
accuracy during the testing phase is attributed to the challenge of modeling strong indices with 
weaker ones, as well as the geological heterogeneity and discontinuities that complicate 
groundwater quality prediction. However, this does not affect the model’s ability to predict extreme 
situations, such as water pollution events. 
 

 
Keywords: Bam province; groundwater; water quality index (WQI); artificial neural networks (ANN); 

multiple linear regression (MLR). 
 

1. INTRODUCTION 
 
In regions with arid climates, the scarcity of 
drinking water frequently leads people to 
prioritize the search for water over evaluating its 
quality for human consumption or other 
purposes. Unfortunately, this tendency to use 
water without proper assessment can lead to 
health problems. It is important to remember that 
both the quantity and the quality of water are 
critical, regardless of its use (Konare, et al., 
2023). Certainly, each parameter contributes to 
the determination of water quality, but none can 
independently define it. This makes it necessary 
to consider several physicochemical and/or 
bacteriological parameters when assessing water 
quality. Ideally, a wide range of parameters 
should be included to define the quality 
comprehensively. The quality of water is 
assessed based on the results of the analysis of 
its measured parameters, obtained through 
either field or laboratory testing. These findings 
are generally compared to established quality 
standards, which may include national (e.g., 
Türkiye, Canada, USA), regional (e.g., EU), or 
global (e.g., WHO) guidelines. A significant 

difficulty in this evaluation process arises when 
certain parameters of the same water sample 
comply with the standards, while others do not. 
This creates a challenge in accurately 
determining the water's quality, exposing the 
limitations inherent in comparison methods. The 
concept of a water quality index was created with 
the purpose of addressing this uncertainty, 
incorporating both physicochemical and/or 
bacteriological parameters in a comprehensive 
way to generate an index that is simple, 
accessible and understandable. The first 
technique for calculating the Water Quality Index 
(WQI) was introduced by (Horton, 1965), which 
took into account ten water quality parameters 
including sewage treatment, dissolved oxygen 
(DO), pH, coliforms, electroconductivity (EC), 
Carbon Chloroform Extract (CCE), alkalinity, 
chloride, temperature and obvious pollution. 
Subsequently, other methods for calculating the 
WQI have been developed, including the 
National Sanitation Foundation WQI (Brown, et 
al., 1970), the Oregon WQI (Dunnette, 1979), 
and more recently, the Canadian WQI (CCME, 
2001). The WQI method is a fundamental 
approach that simplifies large datasets into a 
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single value, reflecting the overall quality of water 
(Horton, 1965). In recent years, the methods for 
calculating the WQI have significantly advanced, 
making it easier to assess and monitor water 
quality both spatially and temporally. The 
Canadian method for calculating the WQI differs 
from other approaches in that it treats all 
parameters equally in the index calculation. In 
contrast, other methods assign weights (ranging 
from 1 to 5) to each parameter based on its 
contribution or importance to water quality. 
However, the implementation of the Canadian 
method is challenging, as it requires at least four 
measurements for a minimum of four 
physicochemical parameters in order to calculate 
the index (CCME, 2001). In one way or another, 
continuous monitoring of water resources is 
essential for defining a WQI, as it directly affects 
how we interpret their spatial and temporal 
fluctuations (Kazi, et al., 2009). Aside from the 
indices used to assess water quality for human 
consumption, other researchers (Anyango, et al., 
2024, Kandil, et al., 2023, Majeed, et al.,2016) 
have created indices that evaluate water quality 
for agricultural and plant-related uses. Through 
Hierarchical Cluster Analysis of WQIs, it has 
been shown that certain parameters do not 
consistently influence the index, regardless of 
their inclusion or exclusion, while others have a 
variable impact, either enhancing or diminishing 
water quality. The parameters falling into the 
latter category should be retained in the WQI 
calculation, whereas those in the former 
including pH, Zn, Cu and SO4 may be excluded 
to enhance cost-efficiency (Konare, et al., 2023). 
So, by setting these parameters aside, we not 
only preserve the quality of the results but also 
reduce costs by not analysing them further. 
 
In a country where agriculture is the main 
occupation for the majority of the population, and 
with the severe lack of surface water often 
exacerbated by climatic uncertainties, 
groundwater is an essential resource for 
addressing the water needs of the population. 
Agricultural, mining, and industrial activities can 
significantly affect the quality of water resources 
(Konare, 2021). Therefore, it is essential to 
monitor water quality to ensure that its intended 
use yields the desired outcomes. Accurate 
forecasting of the WQI is vital for effective 
freshwater resource management, as it enables 
early detection of potential risks and facilitates 
timely interventions to prevent environmental 
disasters (Zamili, et al., 2023). Water quality 
indices provide a reliable and efficient means of 
assessing the condition of water resources. 

Although the methodologies for calculating the 
WQI using various parameters are scientifically 
validated, these techniques are undeniably time-
consuming. 
 
Therefore, the development of mathematical 
models that bypass this calculation process 
would significantly enhance both time efficiency 
and effectiveness (Konare, et al., 2024). Such 
models are essential for ensuring the effective 
management of water resources and the safe 
use of water, without compromising public health 
or the environment. Artificial Neural Networks 
(ANN) are commonly employed either alone or in 
conjunction with techniques such as Multiple 
Linear Regression (MLR), Deep Neural Network 
(DNN), Adaptive Neuro Fuzzy Inference System 
(ANFIS) and other predictive methods to forecast 
WQI in groundwater (Gani, et al., 2023, Taşan, 
2023, Al-Adhaileh, et al., 2022, Kulisz, et al., 
2021, Kadam, et al., 2019) or surface water 
(Banda, 2024, Zamili, et al., 2023, Xia, et al., 
2022). ANN, inspired by the structure and 
function of the human brain, are used to predict 
unknown data after a learning phase (Samson, et 
al., 2010). Through this technique, various layers 
are interconnected to model the relationship 
between inputs and outputs (Chang, eta l., 
2010). ANN offers a mathematical framework for 
quickly and accurately predicting water quality 
parameters, thereby saving time and effort 
(Heidarzadeh, et al., 2017). 
 
Several studies have been conducted in Burkina 
Faso regarding water quality assessment and 
management. (Millogo, et al., 2024) assess 
groundwater quality in Manga and surrounding 
areas using physicochemical parameters and the 
Water Quality Index (WQI). This study indicate 
that most samples have excellent water quality, 
influenced by natural geochemical processes 
such as silicate and carbonate weathering, and 
ion exchange. (Ouedraogo, et al., 2024) examine 
the impact of artisanal gold mining on water 
quality in Méguet, highlighting elevated levels of 
mercury, arsenic, and lead in both surface and 
groundwater. These contaminants, resulting from 
mining activities, pose significant health risks to 
the local population. The study emphasizes the 
need for improved environmental oversight and 
the adoption of sustainable practices to 
safeguard both public health and water 
resources. (Millogo, et al., 2024) investigate the 
quality of groundwater and spring water in the 
Pala locality (Bobo Dioulasso), influenced by 
Sotouba sandstone. Their findings indicate that 
water quality remains within WHO standards, 
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with low mineralization and safe levels of heavy 
metals. The study underscores the importance of 
geological processes in water quality and 
recommends the establishment of a monitoring 
system to address potential pollution risks in the 
future. (Karambiri, et al., 2023) assess wells 
water quality in Dédougou, finding contamination 
with nitrates, iron, ammonium, and faecal 
indicators above national standards. The study 
highlights the need for improved sanitation, 
better protection of wells, and enhanced public 
hygiene to prevent waterborne diseases in the 
region. (Sako & Kafando, 2021) evaluate the 
groundwater quality in the basement aquifers of 
central Burkina Faso using hydrogeochemical 
analysis, Water Quality Index (WQI), and 
geostatistical methods. While the majority of 
borewells provide safe drinking water, high 
concentrations of arsenic and fluoride were 
observed in specific areas, influenced by both 
natural and anthropogenic factors. The study 
recommends targeted monitoring in recharge 
and discharge zones, particularly near Birimian 
Schist and granitic formations, to mitigate future 
contamination risks (Smedley, et al., 2007) 
analyse arsenic concentrations in groundwater 
from Ouahigouya, finding levels that exceed 
WHO guidelines, particularly in areas associated 
with gold-bearing Birimian rocks. The study 
suggests a potential link between high arsenic 
levels and skin disorders, emphasizing the need 
for further research on arsenic contamination in 
the region. Finally, (Coulibaly, et al., 2001) 
evaluate the use of artificial neural networks 
(ANNs) to predict groundwater level fluctuations 
in the Gondo aquifer, comparing various models, 
including IDNN (Input Delay Neural Network), 
RNN (Recurrent Neural Network), and RBF 
(Radial Basis Function). The study concludes 
that the Elman-type RNN model outperforms the 
others, offering reliable forecasts and 
demonstrating its potential for groundwater 
management in semiarid regions with limited 
data. 
 
The objective of this study is to evaluate and 
model the WQI of groundwater in Bam province 
using ANN and MLR methods. This research is 
unique in that it focuses on issues that have not 
been previously explored in the region and 
attempts to model high WQI values based on a 
data collected from 154 boreholes. To achieve 
this, sixteen physicochemical parameters 
including Total Hardness (TH), pH, Electrical 
Conductivity (EC), calcium (Ca), magnesium 
(Mg), sodium (Na), potassium (K), ammonium 
(NH4), bicarbonate (HCO3), chloride (Cl), 

sulphate (SO4), nitrite (NO2), nitrate (NO3), 
phosphorus (PO4), and fluoride (F) were 
incorporated for both WQI calculation and 
modeling, offering valuable insights into the 
groundwater characteristics of the study area. 
 

2. METHODOLOGY 
 

2.1 Geographical Overview of the Study 
Area 

 
Bam Province is located in the northwestern part 
of Burkina Faso, within the North-Central region. 
It lies between longitudes 1°22' and 1°55' West, 
and latitudes 12°59' and 13°55' North. It is 
bordered to the north by the Yatenga Province, 
to the east by the Sanmatenga Province, and to 
the south by the Passoré and Zondoma 
provinces. The province has a strategic position 
as part of the larger Sahelian zone, which 
influences its climate and socio-economic 
conditions. 
 
The province is characterized by a prolonged dry 
season and a relatively short rainy season. The 
rainy season typically lasts three to four months, 
depending on the year, with annual precipitation 
ranging from 600 to 750 mm, which is relatively 
low compared to the more humid regions of the 
country. Influenced by the climate, the region is 
characterized by a vegetation type of the 
Sudanian-Sahelian zone. In the southern part, 
this consists of wooded savannah, while the 
northern areas feature tall grass savannah, 
gradually replacing the thorny steppes. The 
hydrography is characterized by the absence of 
permanent rivers, which results in often 
challenging water management during the dry 
season. Water reservoirs and wells are used to 
supply water during the dry period. 
 

2.2 Geology and Hydrogeology of the 
Study Area 

 
The geology of the study area is closely linked to 
that of the West African Craton. As is the case 
for the majority of Burkina Faso (approximately 
80%), this area is predominantly composed of 
igneous formations. More specifically, the 
northern part of the Bam province is dominated 
by metamorphic and anatectic complexes 
(migmatitic and anatectic gneisses), while the 
southern part is primarily occupied by volcano-
sedimentary belts (basalt, arkosic sandstone, 
siltstone, claystone, pelite, quartzite, etc.). Within 
these two major geological units, granite and 
basalt intrusions are present. Structurally, the 
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Fig. 1. Geographical localisation of study area and sampling points 
 
area exhibits faults oriented along a North-
East/South-West direction, resulting from shear 
phenomena and, to a lesser extent, thrusting. 
Geological structures are significantly more 
numerous in the southern part of the study          
area than in the northern part. This disparity is 
likely to have a considerable impact on 
groundwater exploration in the region, where 
water tends to concentrate in faults and 
fractures. (Fig. 2). 
 
The Bam province is endowed with groundwater 
resources that are crucial for supplying drinking 
water to local populations, particularly in rural 
areas. The recent model of basement aquifers, 
proposed by several authors (Taylor & Howard, 
2000, Lachassagne & Berkowitz, 2005, 

Ouandaogo-Yameogo, et al., 2013), identifies 
three distinct "layers" based on hydrogeological 
properties, arranged from the bottom to the top: 
the top of the fractured basement consists of 
fractures of tectonic origin, usually sub-vertical, 
and functions as a significant drainage system at 
depth; the intermediate fractured zone is notably 
developed in granite formations, can extend to 
several tens of meters in thickness. It is 
characterized by primarily horizontal fractures; 
finally, the weathered upper layer corresponds to 
the weathered portion of the bedrock, which is 
typically more porous and permeable compared 
to the underlying layers. Water from the first two 
aquifers is generally of good quality compared to 
last one, but the resources can be limited and 
hard to access. 
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Fig. 2. The geological map of the study area 
 

2.3 Sampling and Measurements 
 
This study is based on the results of analyses 
conducted on 154 boreholes in 2013 by the 
Directorate General of Water Resources (DGRE) 
of Burkina Faso (Fig. 1). Out of a total of 154, the 
sampling points are distributed across the 
various communes of Bam Province as follows: 
Bourzanga (27 boreholes), Rollo (18 boreholes), 
Zimtanga (16 boreholes), Kongoussi (43 
boreholes), Tikaré (13 boreholes), Guibaré (12 
boreholes), Sabcé (17 boreholes), and Nasséré 
(8 boreholes). 
 
The dataset includes both physical and chemical 
parameters. Physical parameters, such as pH 

and electrical conductivity (EC), were directly 
measured in the field using a multiparameter 
device. Chemical parameters were analysed by 
ion chromatography at the DGRE laboratory in 
Ouagadougou. 
 

2.4 Methods 
 

Before proceeding with the analysis of the data 
collected from the field and laboratory, particular 
attention was paid to verifying the quality of the 
obtained results. To this end, the Ionic Balance 
(IB) of the 154 analysed samples was 
determined using the following formula: 
 

𝐈𝐁 =  
|𝚺(𝐂𝐚𝐭𝐢𝐨𝐧𝐬)−𝚺(𝐀𝐧𝐢𝐨𝐧𝐬)|×𝟏𝟎𝟎

𝚺(𝐂𝐚𝐭𝐢𝐨𝐧𝐬)+𝚺(𝐀𝐧𝐢𝐨𝐧𝐬)
        (Equation 1) 
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Where, each cation (Ca, Mg, Na, K, NH4) and 
anion (HCO3, Cl, SO4, NO2, NO3, PO4, F) 
parameter is in Meq/L. 
 
Only after confirming the reliability of the results 
through this verification was the analytical 
approach, in accordance with the previously 
defined objectives, applied to the data. This 
method enabled the extraction of relevant 
information. 
 
2.4.1 Water Quality Index calculation 
 
The Weighted Arithmetic Water Quality        
Index (WAWQI) method was employed to 
determine the water quality index of the 
groundwater in the study area. This technique 
reduces multiple water quality parameter results 
to a single, easily interpretable value, facilitating 
straightforward evaluation. This advantage, along 
with the fact that a single analysis result         
from a sample point can be used, distinguishes it 
from the Canadian WQI method, which            
requires at least the results of four sampling 
campaigns (CCME, 2001). As a result, the 
WAWQI method has gained worldwide 
recognition (Maraşlıoğlu & Öbekcan, 2017, Fathi, 
et al., 2018). 
 

In this work, the weighted arithmetic WQI values 
were determined based on the following 
procedure: 
 

In the first step, the physicochemical parameters 
(pH, EC, Ca, Mg, Na, K, NH₄, Fe, HCO₃, Cl, 

SO₄, NO₂, NO₃, PO₄, and F), which are to be 
used in the calculation of the water quality index, 
are identified. The guideline values for each of 
these parameters, as per the World Health 
Organization (WHO) standards, are then 
determined (Table 1). 
 
During the second step, a weight (wi) is assigned 
to each selected parameter based on its 
influence on health and its relative importance for 
drinking water quality, according to WHO 
standards. The weights range from 1 to 5, 
depending on the parameter's relevance in 
determining the overall water quality for 
consumption (Table 1). 
 
In the third step, the relative weight of each 
parameter was determined (Table 1) using 
Equation 2. 
 

𝑊𝑖 =
𝑤𝑖

∑ (𝑤𝑖)𝑛
𝑖=1

                                 (Equation 2) 

 
Wi represents the relative weight of each 
parameter, while wi refers to the assigned 
weight. The total number of parameters 
considered is denoted by n (5). In this context, 
Table 1 provides the standard values based on 
WHO guidelines, along with the assigned and 
relative weights for each parameter, which are 
used in calculating the WQI. A weight of 5 was 
assigned to NO₃, NO₂ and EC (Konare, et al., 
2024, Hassan & Fırat, 2022), 4 to pH, SO4, F 
(Sako & Kafando, 2021), NH4, PO4, and 3 to Fe 
(Konare, et al., 2024) and Cl (Sako & Kafando,

 
Table 1. WHO Drinking Water Standards, Weights, and Relative Weights used in the calculation 

of the groundwater quality index 
 

Parameters Units WHO (2011) Weight (wi) Relative weight (Wi) 

pH - 6,5-8,5 4 0,08 
EC at 20°C (μS/cm) 2500 5 0,10 
Total Hardness (mg/L) 500 2 0,04 
Ca (mg/L) 75 2 0,04 
Mg (mg/L) 50 2 0,04 
Na (mg/L) 200 2 0,04 
K (mg/L) 12 2 0,04 
Fe (mg/L) 0,3 3 0,06 
NH4 (mg/L) 1,5 4 0,08 
HCO3 (mg/L) 120 1 0,02 
Cl (mg/L) 250 3 0,06 
SO4 (mg/L) 250 4 0,08 
NO2 (mg/L) 3 5 0,10 
NO3 (mg/L) 50 5 0,10 
PO4 (mg/L) 1 4 0,08 
F (mg/L) 1,5 4 0,08 

Total - - 52 1,00 
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2021), 2 to TH, Ca, Mg, Na, and K (Sako & 
Kafando, 2021), and 1 to HCO3 (Sako & 
Kafando, 2021, Hassan & Fırat, 2022), according 
to their relative importance (Table 1). 
 
In the fourth step, the quality-rating scale (Qi) for 
each parameter was determined using Equation 
3. 
 

𝑄𝑖 =
(𝐶𝑖−𝑉𝑖)

(𝑆𝑖−𝑉𝑖)
× 100                         (Equation 3) 

 
Where Ci represents the estimated concentration 
of each parameter and Si denotes the 
recommended value according to WHO drinking 
water quality standards, the value of Vi is set to 
zero for all parameters, except for pH, which is 
set to 7 (Hassan & Fırat, 2022, Chowdhur, et al., 
2012). 
 
In the fifth step, the sub-index value for each 
parameter is calculated using Equation 4. 
 

𝑆𝐼𝑖 = 𝑄𝑖 × 𝑊𝑖                               (Equation 4) 
 
Finally, the WQI for each groundwater sampling 
point is determined using Equation 5. 
 

𝑊𝑄𝐼 = ∑ (𝑆𝐼𝑖)𝑛
𝑖=1                           (Equation 5) 

 
The calculated WQI values were compared to 
the levels provided in Table 2 to determine the 
water quality class. Based on the results, spatial 
variations in the WQI can be easily observed. 
This allows for the quick identification of critical 
points, enabling the implementation of protective 
and/or remedial measures. When the WQI value 
is below 50, from 50 to 100, 100 to 200, 200 to 
300, and above 300, the water is classified as 
excellent, good, poor, very poor, and unsuitable 
for consumption, respectively. 
 
Table 2. Classification of water according to 

the WQI 
 

WQI level Water class 

< 50 Excellent 
50-100 Good 
100-200 Poor 
200-300 Very poor 
> 300 Inadequate for drinking 

 
The physicochemical parameters were used as 
inputs, and the calculated WQIs as outputs, to 
develop the models using MLR and ANN. Most 
authors (Konare, et al., 2024, Kulisz, et al., 2021, 
Konare, 2021), in the context of their studies, 

have divided the data into three groups (training, 
validation, and testing) with proportions such as 
60-20-20 or 70-15-15. However, some authors 
(Lee, et al., 2023, Messier, et al., 2019) develop 
their models using a 70-30 split, where 70% of 
the data is used for training and 30% for        
testing the model's performance. In                 
this study, we adopted the latter approach to 
place greater emphasis on the training phase 
while ensuring that a sufficient portion of the data 
remained for evaluating the model's 
effectiveness. 
 
Whether for the model based on MLR or ANN, it 
is the training group that was used to develop the 
models, while the other group, was used to test 
the performance of the developed models. The 
input parameters (pH, EC, Ca, Mg, Na, K, NH₄, 

Fe, HCO₃, Cl, SO₄, NO₂, NO₃, PO₄, and F) used 
for modeling the WQIs in both the MLR and ANN 
techniques were identical. 
 
2.4.2 Multiple Linear Regression (MLR) 
 
MLR is a statistical method used to assess the 
relationship between a dependent variable 
(output) and multiple independent variables 
(inputs). It helps to understand how changes in 
the independent variables affect the dependent 
variable. This method, an extension of simple 
linear regression, is widely applied in fields such 
as economics, finance, and social sciences for 
prediction and analysing relationships between 
variables (Konare, et al., 2024, Konare, 2021). 
The model was developed using SPSS software 
(version 25). The general form of the MLR 
equation is as follows: 
 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + . . . + 𝛽𝑛𝑋𝑛   (Equation 6) 
 
Where Y is the dependent variable (output), X1, 
X2, X3, ..., Xn are the independent variables 
(inputs), and β0, β1, β2, ..., βn are the coefficients 
that are adjusted to minimize errors. 
 
2.4.3 Artificial Neural Networks (ANN) 
 
As previously mentioned, MLR provides a clear 
mathematical formula for calculating the output 
parameter (WQI), whereas ANN does not, and is 
often referred to as a "black box" technique. The 
application of ANN modeling was performed 
using MATLAB R2016b. In this study, the Multi-
Layer Perceptron (MLP) architecture was 
chosen, which includes three distinct layers: 
input, hidden, and output, along with the Feed 
Forward Back Propagation (FFBP) algorithm 
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Fig. 3. Feed Forward Back Propagation Neural Network Representation 
 
(Fig. 3) for modeling the WQI (Konare, et al., 
2024, Konare, 2021). This algorithm operates in 
two phases: forward propagation and back 
propagation. In forward propagation, data flows 
from the input layer to the output layer through 
the hidden layer, with weights assigned to 
connections between nodes. The final output is 
derived from the aggregation of node values and 
weights. In back propagation, weights are 
adjusted to reduce errors between the calculated 
and modelled WQI, a technique widely used for 
its error-reducing capabilities (Konare, 2021, 
Ismael, et al., 2021, Hameed, 2017). Neurons in 
the network have specific values and weights, 
and the number of nodes in the hidden layer is 
optimized through trial-and-error to achieve the 
best configuration (Konare, 2021, Kheradpisheh, 
eta., 2015). 
 
The tuning of hidden layer nodes is influenced by 
the number of input features, with the goal of 
maximizing the coefficient of determination (R²) 
and minimizing root mean square error (RMSE) 
and mean absolute error (MAE). As the number 
of neurons strays from the optimal configuration, 
R² decreases, while RMSE and MAE increase, 
signalling the end of testing. Different activation 
functions, such as linear, sigmoid, and hyperbolic 

tangent, were evaluated to identify the best 
setup. Several constants were maintained during 
tuning, including the sigmoid activation function 
for input-hidden layers, linear activation for 
hidden-output layers, a learning coefficient of λ = 
0.50, a momentum coefficient of α = 0.50, a 
maximum of 10,000 iterations, and a single 
output neuron for the WQI (Konare, et al., 2024, 
Konare, 2021). 
 
Wi and W j represent the weights associated with 
the connections between the input-hidden and 
hidden-output layer neurons, respectively. Each 
input layer neuron (pH, EC, Ca, Mg, Na, K, NH₄, 

Fe, HCO₃, Cl, SO₄, NO₂, NO₃, PO₄, and F) has 
"p" weights, corresponding to the number of 
hidden layer nodes. In this study, each hidden 
layer neuron has a single weight, as there is only 
one output layer node (Fig. 3). To minimize the 
differences between the maximum and         
minimum measured data and enhance ANN 
efficiency, input and output layer data               
were normalized between 0.1 and 0.9, as shown 
in Equation 7 (Konare, et al., 2024, Konare, 
2021). 
 

𝑋𝑛𝑖 =
0.8(𝑋𝑖−𝑋𝑚𝑖𝑛)

(𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛)
+ 0.2                (Equation 7) 
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Here, Xni represents the normalized value for 
data point i, while Xmin and Xmax refer to the 
minimum and maximum values of the entire 
dataset. To obtain Xi from the model, the 
denormalization process is applied by using Xmin 
and Xmax, transforming the results based on the 
formula above. 
 

2.4.4 Evaluation of modeling results 
 

The performance of predictions from the MLR 
and ANN models was evaluated using three 
metrics: the coefficient of determination (R²), 
Root Mean Square Error (RMSE), and Mean 
Absolute Error (MAE). These parameters were 
calculated for the training, and test datasets, as 
outlined in Equations 8, 9, and 10. 
 

R2 =  [
[∑ (YMeasured i−YMeasured)(YModelled i−YModelled)n

i=1 ]
2

[∑ (YMeasured i−YMeasured)
2n

i=1 ][∑ (YModelled i−YModelled)
2n

i=1 ]
]                    

(Equation 8) 
 

RMSE = √
1

n
(∑ (YMeasured i − YModelled i)

2n
i=1 )       

(Equation 9) 
 

MAE =
1

n
(∑ |YMeasured i − YModelled i|

n
i=1 )           

(Equation 10) 
 

Where, YMeasured i  represents the ith calculated 
WQI based on measured physicochemical 
parameters (from both field and laboratory data), 

YMeasured is the average of the calculated WQIs, 
YModelled i  denotes the ith modelled WQI, and 

YModelled is the average of modelled WQIs. 
 
R² indicates the accuracy of the model, with a 
value close to 1 signifying a better fit between the 
measured and modelled values. RMSE and MAE 
measure the deviation between observed and 
predicted values, with values close to 0 indicating 
higher model accuracy. These metrics were used 
to compare the performance of the two models, 
MLR and ANN, across different datasets and 
tests. For MLR, the optimal outcome is easily 
identified based on the input parameters (pH, 
EC, Ca, Mg, Na, K, NH₄, Fe, HCO₃, Cl, SO₄, 
NO₂, NO₃, PO₄, and F), while for ANN,        
several tests were conducted to identify the best 
model. 
 

3. RESULTS AND DISCUSSION 
 

3.1 Water Quality Parameters 
 
The calculated IB are situated between 0.06 and 
7.33. additionally, only 5.19 % of the all samples 

have IB value superior to 5 which denote the 
quality of samples analysis devices. 
 
Table 3 presents the descriptive statistical 
analysis of the physicochemical parameters of 
surface water in the study area. The pH values of 
the water samples range from 4.70 to 9.60, with 
a mean value of 6.89, indicating that the waters 
are generally slightly acidic to slightly basic. 
Electrical conductivity (EC) exhibits significant 
variability, with minimum, maximum, and mean 
values of 32.00 μS/cm, 1059.00 μS/cm, and 
405.88 μS/cm, respectively. Total hardness (TH) 
values vary from 2.44 to 52.59, with an average 
of 20.68, suggesting that the waters are 
predominantly soft. The calcium concentrations 
range from 1.24 mg/L to 184.80 mg/L, with a 
mean of 35.35 mg/L. Magnesium concentrations 
range from 0.00 mg/L to 80.63 mg/L, with an 
average of 29.09 mg/L. Sodium concentrations 
fluctuate between 0.10 mg/L and 94.80 mg/L, 
with a mean of 7.08 mg/L, while potassium 
concentrations range from 0.00 mg/L to 9.60 
mg/L, averaging 1.91 mg/L. Total iron 
concentrations range from 0.00 mg/L to 6.40 
mg/L, with an average of 0.25 mg/L. Ammonium 
levels vary from 0.00 mg/L to 2.00 mg/L, with a 
mean concentration of 0.11 mg/L. Bicarbonate 
concentrations range from 45.14 mg/L to 668.56 
mg/L, with an average of 267.30 mg/L. Chlorine 
concentrations fluctuate between 0.33 mg/L and 
5.91 mg/L, with a mean of 1.06 mg/L. Sulphate 
concentrations range from 2.00 mg/L to 100.00 
mg/L, with an average of 6.74 mg/L. Nitrite 
concentrations range from 0.00 mg/L to 0.18 
mg/L, with an average of 0.02 mg/L. Nitrate 
concentrations vary from 0.44 mg/L to 33.88 
mg/L, with a mean of 4.93 mg/L, while phosphate 
levels range from 0.25 mg/L to 2.05 mg/L, with 
an average of 0.78 mg/L. Finally, fluoride 
concentrations fluctuate between 0.02 mg/L and 
2.58 mg/L, with a mean of 0.26 mg/L. 
 
With the exception of bicarbonate and EC, which 
have relatively high standard deviations (126.49 
and 223.34, respectively), the other parameters 
have rather low values for this statistical 
parameter, ranging between 0.03 and 25.15. 
Despite its significant variation (32-1059 μS/cm), 
EC remains within the recommended range by 
the WHO, indicating good water quality. This 
parameter reflects the mineralization of the 
water, its richness in ions and ability to conduct 
electricity. This high variability can be explained 
by the petrographic diversity in the study area. 
The majority of the chemical elements in 
groundwater come from ion exchanges between 
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water and rock (Konare, 2021) or sea water 
intrusion. This value is more important in 
groundwater compared to surface water due to 
their important contact and time with rocks. As 
for bicarbonate, the process is much more 
complex. Indeed, rainwater rich in carbonic acid 
(CO2) or a geological environment rich in 
limestone can promote high concentrations. 
 
Among the sixteen parameters, EC, TH, Na, K, 
NH4, Cl, SO4, NO2, NO3, and F parameters 
comply with the standards (WHO) while pH, Ca, 
Mg, Fe, HCO3 and PO4 don’t comply with in 
some boreholes. The vast majority of 
physicochemical parameters (10 out of 16) for 
the 154 groundwater samples are in compliance 
with the standards, indicating that the 
groundwater quality in the area is generally quite 
good (Table 3). Among the six non-compliant 
parameters, with the exception of bicarbonate 
which exceeds the standard 135 times, the other 
parameters exceed the limit between 10 and 35 
times. This result suggests a generally good 
state of groundwater quality in the Bam province. 
However, one may question the overall quality of 
water when some parameters are compliant and 
others are not. Therefore, the Water Quality 
Index was calculated for each sample to assess 
the overall quality of each sample, taking all 
parameters into account. 
 
3.2 Water Quality Index (WQI) 
 
The descriptive statistics of the WQI results are 
summarized in Table 3. The maximum WQI 
value recorded was 148.82 (observed at Kouka 
village, Konguoussi commune), while the 
minimum was 11.30 (observed at Kalagré-Mossi 
village, Zimtenga commune). The mean WQI 
value was 28.80, with a standard deviation of 
17.50. According to the WQI classification 
system used, values below 50 are classified as 
excellent, those between 50 and 100 as good 
quality, values ranging from 100 to 200 as poor 
quality, those between 200 and 300 as very poor 
quality, and values exceeding 300 are 
considered inadequate for drinking (Table 2). 
The standard deviation suggests that the WQI 
values do not exhibit significant variation, 
indicating that the majority of the values are 
concentrated around the mean. This result is 
generally favourable in terms of water quality, as 
the mean WQI falls within the excellent category. 
 
Out of the total of 154 boreholes, 147 exhibit 
water quality indices classified as excellent, 6 as 
good, and 1 as poor. No samples fall under the 

categories of very poor or inadequate for 
consumption. Although a single water point is 
classified as poor, it can be concluded that the 
overall water quality in the study area is very 
good. The non-compliant parameters observed in 
some boreholes do not significantly affect the 
water quality. In other words, despite some water 
points having non-compliant parameters, the 
overall water quality remains generally 
satisfactory. Other studies conducted in the 
same region (Millogo, et al., 2024, Millogo, et al., 
2024, Sako & Kafando, 2021) or in different parts 
of the world (Ram, et al., 2021, Gani, et al., 2023, 
Kulisz, et al., 2021) have yielded similar results 
regarding the high quality of groundwater. The 
groundwater in this area benefits from natural 
protection due to its position, often being 
shielded from direct surface contamination. 
However, this should not overshadow the urgent 
need for conservation efforts, as it is technically 
very challenging and extremely costly to 
remediate polluted groundwater once 
contamination has occurred. Additionally, 
artisanal mining activities have led to the 
contamination of both surface and groundwater 
(Ouedraogo, et al., 2024), and wells have been 
contaminated by nitrates, iron, ammonium, and 
faecal matter due to inadequate sanitation and 
lack of well protection (Karambiri, et al., 2023) in 
neighboring localities. 
 
3.3 Groundwater Quality Index modelling 
 
In previous studies, parameters have been 
classified according to various criteria, such as 
the measurement years (Konare, 2021), a 
gradient from upstream to downstream (Konare, 
et al., 2024), or even randomized (Lee, et al., 
2023, Messier, et al., 2019, Yoo, et al., 2016). In 
contrast, as outlined in the methodology, once 
the WQI values were computed, the results were 
ranked in ascending order based on these 
indices. This approach enabled the evaluation of 
the ability of lower indices to predict higher 
indices, while also considering extreme pollution 
scenarios where high indices could be observed. 
In these cases, the model must be able to 
accurately capture the dynamics and potentially 
nonlinear relationships between the lower and 
higher indices, ensuring robust predictions even 
under severe pollution conditions. Both MLR and 
ANN were employed to train the models, using 
16 physicochemical parameters as input and the 
WQI as the output, based on 70% of the 
available data. After training, the model 
performance was tested using the remaining 
30% of the data. 
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Table 3. Descriptive statistics of the physicochemical parameters and WQI 
 

Parameters Maximum Minimum Average Std. 
Dev. 

Number of Non-
Compliant Points 

WHO 
(2011) 

pH 9,60 4,70 6,89 0,60 36 6,5-8,5 
EC 1059,00 32,00 405,88 223,34 0 2500 
TH 52,59 2,44 20,68 10,52 0 500 
Ca 184,80 1,24 35,35 25,15 10 75 
Mg 80,63 0,00 29,09 17,78 20 50 
Na 94,80 0,10 7,08 10,75 0 200 
K 9,60 0,00 1,91 1,82 0 12 
Fe 6,40 0,00 0,25 0,68 17 0,3 
NH4 2,00 0,00 0,11 0,22 0 1,5 
HCO3 668,56 45,14 267,30 126,49 135 120 
Cl 5,91 0,33 1,06 0,67 0 250 
SO4 100,00 2,00 6,74 10,65 0 250 
NO2 0,18 0,00 0,02 0,03 0 3 
NO3 33,88 0,44 4,93 4,96 0 50 
PO4 2,05 0,25 0,78 0,30 25 1 
F 2,58 0,02 0,26 0,32 0 1,5 
WQI 148.82 11.30 28.80 17.50 - - 

Std. dev. Means Standard deviation 

 
The MLR technique was applied to derive the following formula for calculating the WQI: 
 

𝑊𝑄𝐼 = 27.947– 2.722𝑝𝐻– 0.006(𝐸𝐶)– 0.034(𝐶𝑎)– 0.017(𝑀𝑔)– 0.027(𝑁𝑎) + 0.288(𝐾) +
16.018(𝐹𝑒) + 4.55(𝑁𝐻4) + 0.034(𝐻𝐶𝑂3) + 0.326(𝐶𝑙) + 0.062(𝑆𝑂4) + 24.317(𝑁𝑂2) +
0.207(𝑁𝑂3) + 6.899(𝑃𝑂4) + 4.534(𝐹) + 0(𝑇𝐻)                                                      (Equation 11) 

 
This formula was subsequently applied to both the training and testing datasets. Finally, the results 
obtained using this formula were compared with those calculated without the application of the MLR 
technique. The performance of both the MLR and ANN models for the WQI is presented in Table 4. 
 

Table 4. Performance of MLR and ANN models of WQI 
 

Models MLR ANN 

Training set R2 0.61 0.999 
RMSE 2.71 0.0037 
MAE 2.02 0.0032 

Test set R2 0.93 0.96 
RMSE 7.97 4.46 
MAE 6.32 3.27 

 
In the case of the ANN method, the modeling 
process was carried out in accordance with the 
conditions specified in the methodology section. 
In contrast to the MLR approach, the ANN 
method offers greater flexibility for 
experimentation, allowing for adjustments to 
various parameters, such as the number of 
neurons in the hidden layer, the number of inputs 
and outputs, learning rate, activation functions, 
and others. For this study, the only parameter 
adjusted was the number of neurons in the 
hidden layer to optimize the model. The optimal 
model was selected based on several evaluation 
criteria, including the correlation coefficient (R²) 

and error metrics (RMSE, MAE). The best-
performing model was obtained after 7 iterations, 
with the number of neurons in the hidden layer 
set to 23. The results of the ANN model for the 
Water Quality Index (WQI) are presented in 
Table 4. 
 
The model based on ANN has shown particularly 
promising results, especially when considering 
the correlation coefficients. During the training 
phase, the ANN model achieves a coefficient of 
determination (R²) of 0.999, indicating a highly 
precise fit between the calculated WQI and the 
modelled WQI. In comparison, the model based 
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Fig. 4. Relationship between calculated and predicted WQI with ANN and MLR technics in 
training and testing sets 

 
on Multiple Linear Regression (MLR)                   
also demonstrates the ability to model                   
the WQI, but with less favourable evaluation 
coefficients (R², RMSE, MAE), as shown in          
Fig. 4. 
 
In the testing phase, a similar trend is observed, 
with the ANN model still outperforming the MLR 
model. However, an important nuance arises: 
although the ANN model remains superior, the 
MLR model achieves a better R² value during 
testing than during training, as depicted in Fig. 4. 
This suggests that while both techniques are 
capable of modeling the WQI, the learning 
process differs between the two methods, and 
the ANN technique proves to be more robust in 
terms of fitting the data during training and 
testing. 
 
The results from the learning phase are overall 
more satisfactory than those obtained during the 
testing phase. This observation can be attributed 
to the challenge of modeling strong indices using 
weak indices. During the learning phase, the 
model is exposed to data that do not fully 
represent the reality of the field, particularly in 
terms of weak indices, which it struggles to 
capture. 

The two techniques have been used by other 
authors to model the WQI of surface waters 
(Konare, et al., 2024), where the data were 
ordered from upstream to downstream, and of 
groundwater (Lee, et al., 2023, Messier, et al., 
2019, Yoo, et al., 2016), where the data were 
randomized, with lower error rates compared to 
this study. This highlights the difficulty of 
predicting high values based on lower ones. 
Moreover, the geological context of the study 
area, characterized by a wide variety of 
geological formations and discontinuous 
fractures through which groundwater circulates, 
also contributes to this disparity. This geological 
configuration leads to heterogeneity in water 
quality, due to the presence of multiple, poorly 
interconnected water flow pathways. Such limited 
interconnection restricts the relationships 
between different water points, thus complicating 
the modeling of the water quality index. However, 
this difficulty should not divert the research 
objectives in the field of water pollution, which 
remain the necessity for models to effectively 
predict extreme pollution events. 
 
To enhance model performance despite this 
complex geological context and the data 
configuration, it would be beneficial to conduct 
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sampling at various times of the year, particularly 
during the wet and dry seasons. Incorporating 
additional data from these periods could help 
better capture seasonal variations in water 
quality, thereby enabling the construction of a 
more robust and accurate model. 
 

4. CONCLUSION 
 
The groundwater quality in the study area is 
predominantly excellent, with 97% of the wells 
showing very good quality, and only one out of 
154 wells having a poor WQI. While most of the 
physicochemical parameters analysed in this 
study remain within acceptable limits, certain 
parameters, including pH, phosphate, 
magnesium, iron, and occasionally calcium, 
exceeded the recommended limits set by the 
World Health Organization (WHO). Notably, 
bicarbonate levels surpassed the WHO 
standards 135 times, indicating a frequent 
deviation from the acceptable range. However, 
these exceedances have not significantly 
affected the overall good quality of the 
groundwater. 
 
The modeling approaches employed in this study 
are capable of developing a WQI model based 
on low-quality indices and subsequently 
predicting higher WQI values. When comparing 
the results of the two techniques, it is evident that 
ANN outperform traditional MLR, exhibiting lower 
error rates (RMSE and MAE) and stronger 
correlations (R²). 
 
Despite the overall good quality of groundwater, 
the proliferation of small-scale artisanal gold 
mining, involving uncontrolled mercury and 
cyanide use, along with agricultural practices that 
rely on fertilizers and pesticides, and the 
insecurity linked to the use of Improvised 
Explosive Devices (IEDs) containing high levels 
of nitrates, highlight the importance of increased 
monitoring of water resources. Special attention 
should be paid to parameters such as pH, 
phosphate, magnesium, iron, calcium, and 
bicarbonate, which have exceeded the 
recommended standards, as well as to heavy 
metals and other pollutants. This targeted 
monitoring will be crucial in ensuring the 
continued protection of water quality in the Bam 
province. 
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